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Preparation of Enantioenriched Tertiary Hydroperoxides
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Hydroperoxides can serve as both biologically active agents and Table 1.

precursors to therapeutically valuable endoperoxides. example,

planaxool is a cytotoxic agent representative of the complex tertiary

hydroperoxides found in natufdn addition, appropriately substi-

tuted tertiary hydroperoxides have been utilized as intermediates
in the syntheses of antimalarial agents such as the natural product

yingzhaosu €and the synthetic 1,2,4-trioxarie*

CH3
N,
(e} (7) o
H OH (0]
CCH,
Ph" CHj3
planaxool yingzhaosu C 1

Applications of these compounds and related structures in
medicinal chemistry would benefit from a method capable of
obtaining enantiopure tertiary hydroperoxides. The accessibility of
racemic hydroperoxides, often available in one step from the
corresponding alcohol, has spurred the exploration of kinatid

classicdl resolution strategies to synthesize these compounds.

Although enzymatic kinetic resolutions of a few secondary berzylic
and a-hydroxy allylic hydroperoxides proceed with excellent

selectivities, these systems are limited in substrate scope. To date

all resolutions of tertiary hydroperoxides occur with selectivity
factors of less than thrée.
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In this communication, we demonstrate that a reductive kinetic
resolution strategy, employing commercially available enantiopure
phosphines, can provide optically pure tertiary hydroperoxides with
high efficiency. The use of phosphines in stoichiometric quantities
is mitigated by the ease with which the resulting phosphine oxide

Kinetic Resolution of Hydroperoxide 11 with Various
Enantiopure Phosphines

Me OOH Me OOH Me OH
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-67 °C
CHCl,
-1 (+)or (-)-11 (+) or (-)-12
entry phosphine % conv? % ee of 112 ke
1 (2539-CHIRAPHOS @) 47 0 1.0
2 (RR)-Me-DuPHOS 8) 39 0 1.0
3 (S9)-i-Pr-DUPHOS 4) 50 19 1.2
4 CARBOPHOS %) 41 13 1.3
5 (9-MOP (6) 28 6 15
6 (9-xylyl-BINAP (7) 56 23 1.7
7 (S9-NORPHOS 8) 55 36 2.5
8 (R-PHANEPHOS 9) 50° 45 35
9 (9-xylyl-PHANEPHOS 10) 50 86 37

aConversion and ee were determined by HPLC or SFC analysis using
Chiracel OD-H columns? See ref 11¢ Conversion was determined Bil
NMR spectroscopic analysis.

The reduction of chiral tertiary hydroperoxides by chiral phos-
phines was examined using compourid This substrate contains
three sterically different substituents, including a chromophore to
facilitate HPLC analysis. Although all of the phosphines screened
are effective at enantioselective transformations in metal-mediated
synthese$? most gave low selectivities for the reduction of
hydroperoxidell (Table 1, entries 48). The cyclophane-derived
phosphinel0, however, reduced hydroperoxidd with a kg of
37, providing recovered starting material with 86% ee at 50%
conversion (Table 1, entry 9312

The kinetic resolution of benzylic tertiary hydroperoxides is
general using the optimized bisphosphixgdyl-PHANEPHOS 10)
was effective in resolving hydroperoxides containing three sterically
different substituents (Table 2, entries-3). In all cases, R)-10
reduced the|{)-(9-hydroperoxide preferentially, and the enanti-
omer, §-10, had the opposite selectivity.PhosphineR)-10 also
resolved the functionalized hydroperoxitig although the selectiv-
ity was lower (Table 2, entry 6).

The phosphine optimized for tertiary benzylic hydroperoxides
is less efficient for the resolution of secondary benzylic and non-
benzylic hydroperoxides. The reduction of secondary benzylic
hydroperoxides with phosphin&)-10 proceeded with moderate
selectivity. This process, however, complements other methods of
obtaining these compounds in enantiopure form (Table 2, entries
6—9).7 Selectivities diminished with increasing length of the alkyl
linker in the resolutions of non-benzylic hydroperoxid&® and
24 with (R)-10 (Scheme 1). Presumably, as the tether length
increases, the steric differentiation decreases at the reactive center.

can be recycled (vide infra). In addition, this strategy can be applied The kinetic resolution of racemic tertiary hydroperoxides is
to secondary hydroperoxides as a complementary method to thoseamenable to preparative scale reactions. One gram of hydroperoxide

reported’
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(+)-11 was subjected to resolution conditions with commercially
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Table 2. Generality of Kinetic Resolution
R! OOH R! OOH R! OH
(R-10 P N
R2Z —— R2 R2
-67°C ©/<
entry substrate R! R? % conva % ee? kel
1 13 Me Et 43 63 21
2 14 Me  n-Pr 46 71 23
3 15 Me n-Bu 57 90 16
4 16 Me i-Bu 39 58 37
5 17 Me  cCgHiz 56 95 25
6 18 Me  CHOSiMet-Bu 4F 42 3.8
7 19 H Me 84 7 2.6
8 20 H Et 75 76 3.4
9 21 H i-Pr 50 62 6.9
10 22 H c-CeH11 43 42 5.2

aConversion and ee were determined by HPLC or SFC analysis using
Chiracel OD-H columns? See ref 11¢ Conversion was determined Bif
NMR spectroscopic analysis.

Scheme 1
Me OOH Me OOH
(R)y-10 .
-Pr i-Pr
n -67°C n
conversion ee kel
(£)23 n=0 45% (+)or(-)-23  51% 7.1
(£}24 n= 45% (For(-}24 0% 1
Scheme 2
Me OOH 1. (R)-10 Me, OOH Me, OH
j.py (1% conv.) ipr Fons ©)\i-Pr
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10g EtsN 0249
3. n-BugNF
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>99% ee >99% ee

available phosphineR)-10 (71% conversion, Scheme 2). The
resulting enantiopure hydroperoxider)¢(R)-11 and enriched
alcohol )-(9-12 could not be separated by physical means, but
a strategy was developed to facilitate purification. When the mixture
of hydroperoxide £)-(R)-11 and alcohol {)-(9-12 was treated
with Et;SiCl, the hydroperoxide was protected selectivélgnd
the resulting silylperoxy ether could be separated from the alcohol
by column chromatography. Subsequent desilylation provided
enantiopure ¥99% ee) hydroperoxideH)-(R)-11 in 24% overall
yield. This route also allows access to enantiopure tertiary alcohol
(+)-(R)-12 by reduction with triphenyl phosphine (Scheme 2).
Preliminary mechanistic studies reveal that the two phosphines
of xyly-PHANEPHOS 10) operate independently The supposed
intermediate, mono(phosphine oxid&)-25, was isolated from the
reaction of phosphineR)-10 and 1 equiv of hydroperoxidé?7.
Utilizing this compound in the resolution of hydroperoxidé
afforded starting material with 84% ee at 51% conversion €

Scheme 3
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In addition, the resulting bis(phosphine oxide) can be converted
back to the phosphine in high yielél.
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